

Methane emission from ruminants and current advances in mitigation strategies in China and India

Tao Ma May 23, 2024 Bled

Introduction of CAAS

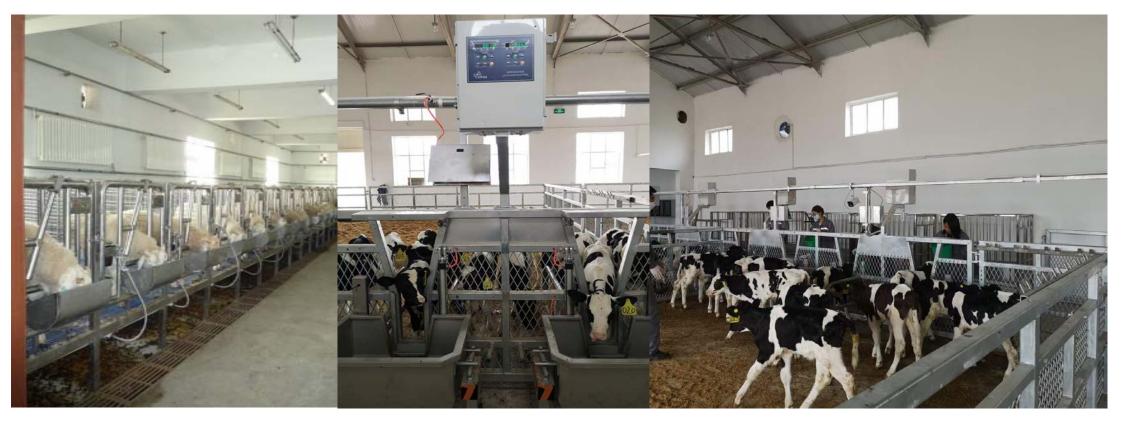
Introduction of CAAS

Research Institutes in Beijing

- Institute of Crop Sciences
- Institute of Plant Protection
- Institute of Vegetables and Flowers
- Institute of Environment and Sustainable Development in Agricultural
- Institute of Animal Sciences
- Institute of Apicultural Research
- Institute of Feed Research
- Institute of Food Science and Technology
- Biotechnology Research Institute
- Institute of Agricultural Economics and Development
- Institute of Agricultural Resources and Regional Planning
- Agricultural Information Institute
- Institute of Quality Standards and Testing Technology for Agro-Products
- Institute of Food and Nutrition Development of MARA

Research Institutes outside Beijing

- Institute of Farmland Irrigation
- China National Rice Research Institute
- Institute of Cotton Research
- Oil Crops Research Institute
- Institute of Bast Fiber Crops
- Institute of Pomology
- * Zhengzhou Fruit Research Institute
- Tea Research Institute
- Harbin Veterinary Research Institute
- Lanzhou Veterinary Research Institute
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences
- Shanghai Veterinary Research Institute
- Institute of Grassland Research
- Institute of Special Animal and Plant Sciences
- Agro-Environmental Protection Institute of MARA
- Biogas Institute of MARA
- Nanjing Institute of Agricultural Mechanization of MARA


Our research fields

- Improving health and growth of young ruminants through multiple strategies
- Determining the nutrient requirements of indigenous sheep and goat breeds
- Enhancing energy utilization efficiency of ruminants and methane mitigation
- Developing agro-byproducts that could replace soybean meal and high-quality grass

Our research facilities

Individual feeding stall

Automated calculation of feed intake

Studies of energy metabolism and methane mitigations

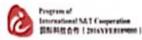
- Determining energy requirement of indigenous sheep
- Evaluating the effect of plant extract/microorganisms on methane emission

Studies of energy metabolism and methane mitigations

- Quantifying methane emission from Chinese Holstein cows
- Evaluating the effect of plant extract/microorganisms on methane emission

International collaboration on methane mitigation

Collaborating with Prof. Alex Hristov since 2015



反刍动物及其幼畜营养代谢 中美联合研究中心

Sino-US Joint Lab on Nutrition and Metabolism of Ruminants

中央部公益性料研院所签本料研会 务数支项Fundamental Research Funds for Creaters Non-press

Ruminant population in China and India

In 2022, the population of ruminants in China and India reached 945 million, accounting for up to 22% of the global population (4.22 billion)

Buffalo	Value	Cattle	Value	Goat	Value
<mark>India</mark>	111,856,246	Brazil	234,352,64	India	149,994,09
Pakistan	43,676,000		9		3
China	26,875,125	India	193,606,91 3	China	132,359,66 0
Nepal	5,132,931	USA	92,076,600	Nigeria	88,037,053
Philippines	2,774,471	Ethiopia	67,961,433	Pakistan	82,503,000
Vietnam	2,231,600	China	61,390,129	Bangladesh	60,000,000
Myanmar	2,000,000	Argentina	54,242,595	Ethiopia	49,323,166
Brazil	1,598,268	Pakistan	53,436,000	Chad	46,438,592
Bangladesh	1,508,000	Mexico	36,338,366	Kenya	34,529,910
Egypt	1,419,927	Chad	35,749,982	Sudan	32,598,924
		Sudan	32,318,770	Mali	27,832,624

Sheep	Value
China	194,030,29 8
<mark>India</mark>	75,345,847
Australia	70,234,655
Iran	55,582,000
Nigeria	50,284,350
Chad	45,081,553
Turkey	44,687,888
Sudan	41,332,641
Ethiopia	35,069,956
UK	33,066,000 FAOSTAT

Intensive sheep and goat farms in China

- Increasing s&g population and limited land for grazing
- Policy-oriented (~50% farms are expected to be intensive by 2025)

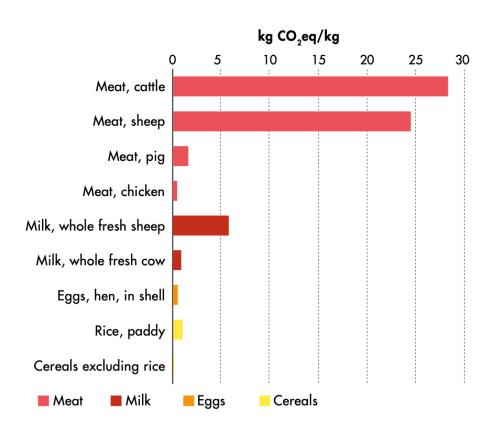
Smallholder dairy cattle farms in India

- Contributing to ~25% of the global milk production
- Employing more than 80 million farmers with 70% being smallholder farmers
- On average 2.2 milking cows and 0.7 milking buffaloes (Lindahl et al., 2020)

Overview of world GHG sources

WORLD FARM-GATE GREENHOUSE GAS EMISSIONS BY ACTIVITY

21% 6 21% 9% Billion tonnes CO₂eq 10% 10% 9% 12% 13% 12% **12**% 2 37% 36% 0 2000 2005 2010 2015 2021 Enteric fermentation Drained organic soils On-farm energy use Manure left on pasture ■ Rice cultivation Other


Note: Percentages on the figure indicate the shares in the total; they may not tally due to rounding.

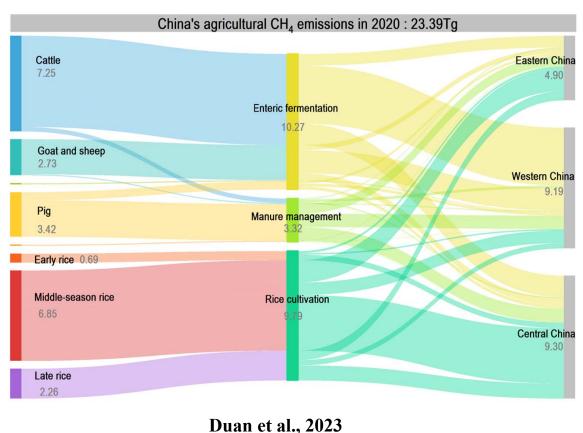
Source: FAO. 2023. Emissions totals. In: FAOSTAT. Rome. [Cited October 2023].

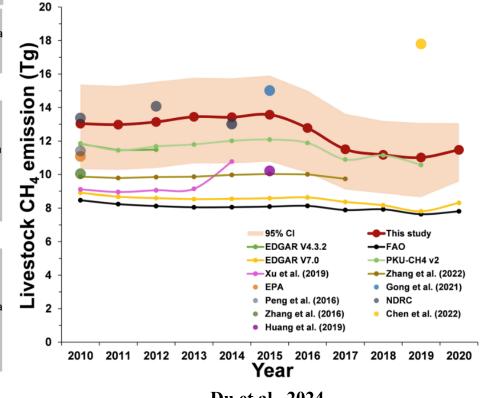
https://www.fao.org/faostat/en/#data/GT

Download: https://doi.org/10.4060/cc8166en-fig67

WORLD EMISSIONS INTENSITY OF AGRICULTURAL COMMODITIES (2021)

Source: FAO. 2023. Emissions intensities. In: FAOSTAT. Rome. [Cited October 2023].


https://www.fao.org/faostat/en/#data/El


Download: https://doi.org/10.4060/cc8166en-fig68

Livestock CH₄ emissions in China

Enteric fermentation contributes to 10.27Tg of the total 23.39Tg CH₄ emission

Du et al., 2024

Livestock CH4 emissions in India

Methane emission from livestock animals reaches 12.74Tg

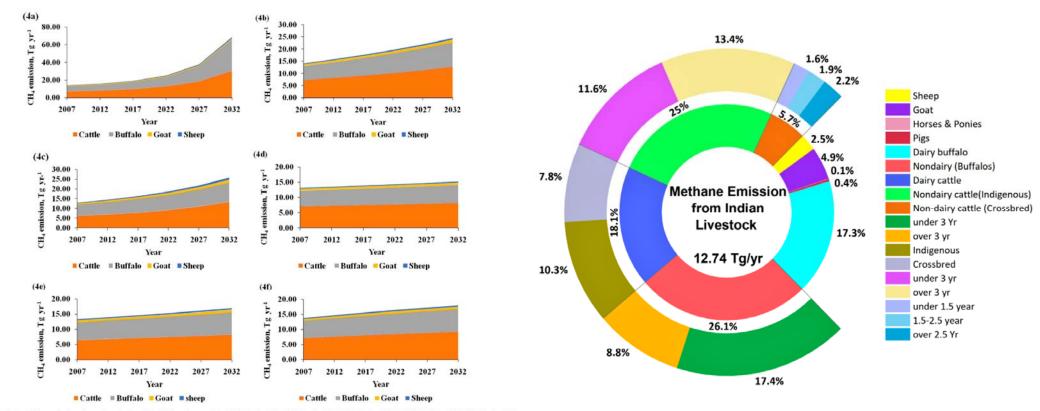


Fig. 4. Projected CH₄ emissions from livestock under different scenarios: (a): Under BS-I; (b): Under BS-II; (c): Under BS-III; (d): Under MS-II; (e): Under MS-III; (f): Under MS-III.

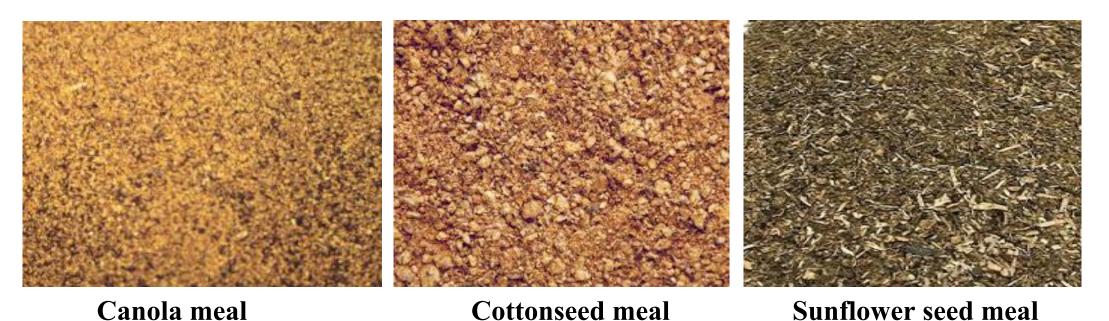
Kumari et al., 2016

Samal et al., 2024

Agro-byproducts used for ruminants in China and India

Oil rape/canola straw

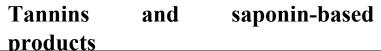
Paddy straw



Agro-byproducts used for ruminants in China and India

Seeking for soybean meal 'replacer'

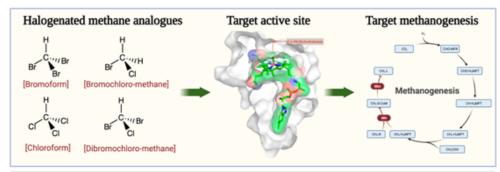
China imported 100.86 million tonnes of soybeans in marketing year 2022-23 on the strength of Brazilian shipments, and sustained demand from the country's feed sector is expected to push 2023-24 to similar levels.



16



Feed additives for methane mitigation in China and India





Harit Dhara – Anti Methanogenic Feed Supplement

In silico method to screen potential feed additives

Feed additives for methane mitigation in China and India

The anti-methanogenic supplement has the potential to decrease enteric methane emission (~22%) at the recommended level (5% of DM) of supplementation

TYPE Original Research
PUBLISHED 21 November 2022
DOI 10.3389/fmicb.2022.1048288

OPEN ACCESS

Shengguo Zhao,

Institute of Animal Sciences (CAAS), China

REVIEWED BY

Burarat Phesatcha,

Rajamangala University of Technology Isan, Thailand

Samantha Joan Noel

Aarhus University,

Denmark

*CORRESPONDENCE

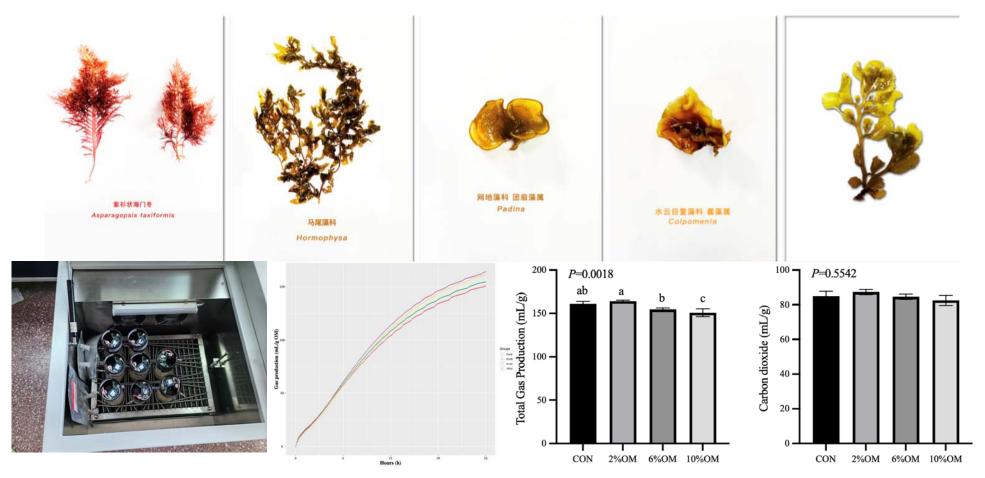
Atul Purushottam Kolte atulkolte@gmail.com

Effect of an anti-methanogenic supplement on enteric methane emission, fermentation, and whole rumen metagenome in sheep

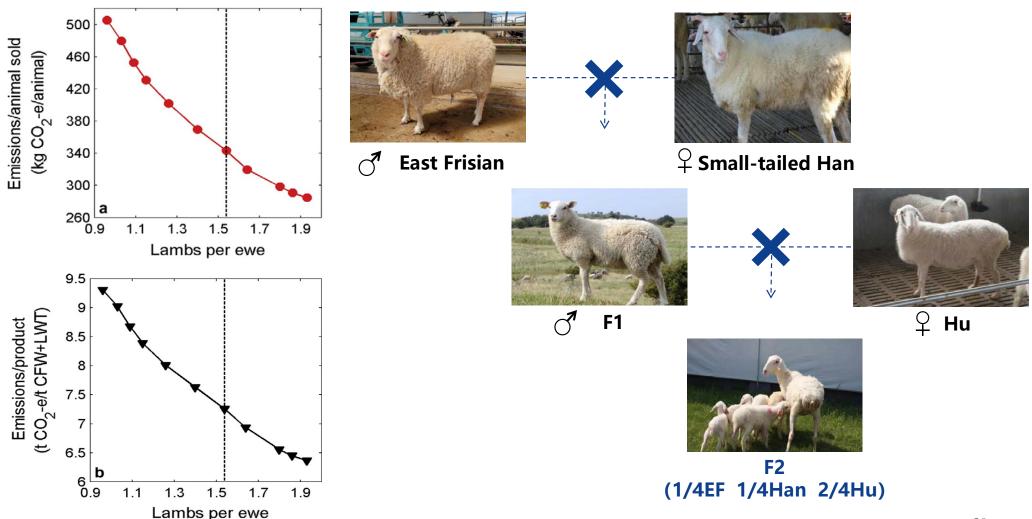
Pradeep Kumar Malik¹, Shraddha Trivedi², Atul Purushottam Kolte^{1*}, Archit Mohapatra¹, Raghavendra Bhatta¹ and Habibar Rahman²

¹ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India, ²International Livestock Research Institute, New Delhi, India

Supplementation of rosmarinic acid (molecular docker approach) decreased hydrogen production and methane production



Feed additives for methane mitigation in China and India



Evaluation the efficacy of different seaweed species

Genetic efforts in breeding animals in China

Trait recording organizations in China

Scientific Data Center, Chinese Academy of Sciences

EYIMU company

Trait recording organizations in India

National Dairy Development Board

Ways to accelerate low methane emission breeding

Data collection is priority-herd characteristics, feeding input, feed formulation, energy consumption, manure management/disposal

An approach to reduce greenhouse gas emission in Chinese dairy farms through improving production efficiency Working Paper No. 383 CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) Wei Wang Jelle Zijlstra Shengli Li

1.	Introduction
	1.1. Background of the approach
	1.2. Goal of the approach
	1.3. Audience for this guide
	1.4. Brief explanation of the approach
	1.5. Profesionals involved to conduct the approach
2.	Data collection method1
3.	Data processing and output
	3.1. Data quality and validation
	3.2. Calculation of GHG
4.	Analysis of data by experts and consultants1
	4.1. Tools to support assessment of the technical and profitability results1
	4.2. Benchmarking methodology to support assessment of GHG emission results 1
	4.3. Approach to come to conclusions about the performance of a farm and
	recommendations for changes in farm management1
	4.4. Implementation of the recommendations and progress monitoring
5.	Conclusion and recommendations2
Re	ferences2
Ar	pendix I

Ways to accelerate low methane emission breeding

Joint research

- •Bio-economic model and life cycle assessment (LCA) analysis were combined to determine the intensity values (IVs) of important genetic traits of dairy cows.
- •Different selection indices were developed based on different breeding goals.
- •Based on the indices, farm profit and GHG emission intensity can be balanced.

Journal of Cleaner Production
Volume 451, 20 April 2024, 142099

Balancing farm profit and greenhouse gas emissions along the dairy production chain through breeding indices

 $\frac{\text{Rui Shi}^{a\ b\ c\ 1}, \, \underline{\text{Yue Wang}}^{b\ 1}, \, \underline{\text{Corina E. van Middelaar}}^{b}, \, \underline{\text{Bart Ducro}}^{c}, \, \underline{\text{Simon J. Oosting}}^{b}, \\ \underline{\text{Yong Hou}}^{d} \, \, \, \, \, \, \underline{\text{Mart Van der Linden}}^{b}$

Ways to accelerate low methane emission breeding

Joint research

There's currently a shortage of feed in India, so farmers give their cattle whatever they can, which is mostly lower quality and higher emitting. Whatever measures are taken to reduce methane emissions, it should have **minimal impact on farmers'** livelihoods, and should account for the ways people raise their livestock.

https://apnews.com/article/methane-emissions-dairy-farming-climate-change-india-global-warming-agriculture-5aa77866e27f6d94e14e4e394e0b7201

Joseph McFadder/Provided

Horned cattle on a typical smallholder farm in India, a country which is home to more than 300 million cattle and 85 million small farms.

Cornell, EDF aim to reduce methane output for India's dairies

THANKS FOR YOUR ATTENTION

